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Abstract

A theory for thick spherical shells is presented in this paper. The equations given here do not only incorporate the
effects of transverse shear deformation but also account for the initial curvature as well as the radial stress. The pro-
posed theory presents a very good approximation for the shell constitutive equations and the nonlinear distribution of
the in plane stresses across the thickness of the shell. The later is very important for thick shell analyses. The presented
formulation is based on the following: (1) assumed out of plane stress components which satisfy given boundary
conditions; (2) three-dimensional elasticity equations with an integral form of the equilibrium equations; (3) stress
resultants and stress couples acting on the middle surface of the shell, average displacements along the normal at a point
on the middle surface, and average rotations of the normal.

The proposed shell equations can be conveniently used in finite element analysis. An application of this theory to the
finite element analysis of spherical shells will be presented in the follow-up paper.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The complete two-dimensional theory of thin shells was developed by Love over 100 years ago. Numerous
contributions on this subject have been made since then. Any two-dimensional theory of shells is an
approximation of the real three-dimensional problem. Researchers have been seeking better approximations
for the exact three-dimensional elasticity solutions for shells. In the last three decades, the developed refined
two-dimensional linear theories of thin shells include important contributions of Sanders (1959), Flugge (1960),
and Niordson (1978). In these refined shell theories, the initial curvature effect is taken into consideration in the
formulation of shell equations. Nevertheless, the deformation is based on the Kirchhoff-Love assumption, and
the radial stress effect is neglected. In the current work we will refer to all the theories built on Kirchhoff-Love
assumption, as the classical theory. The refined theories by Sanders (1959), Flugge (1960) and Niordson (1978)
provide very good results for the analysis of thin shells. The theory of Sanders—Koiter has been widely used in
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the finite element analysis of shells (Ashwell and Gallagher, 1976). However it is shown (Niordson, 1971) that
Love’s strain energy expression has inherent errors of relative order [i/R + (h/L)’] where h is the thickness of
the shell, R is the magnitude of the smallest principal radius of curvature, and L is a characteristic wavelength of
the deformation pattern of the middle surface. Consequently when the refined theories of thin shells are applied
to thick shells, with //R not small compared to unity, the error could be quite large as expected. Relative to
theory of thin shells, the theory of thick shells has received limited attention by the researchers up to now. With
the increase of the utilization of thick shells to various engineering applications such as cooling towers, dams,
pressure vessels, etc. it is imperative to develop a simple and accurate theory for thick shells. Voyiadjis and Shi
(1991) developed very accurate and convenient for finite element analysis a refined shell theory for thick
cylindrical shells. The current work presents a refined shell theory for thick spherical shells, however the shell
equations derived here are based on the same assumptions as those of Voyiadjis and Shi (1991). The proposed
work can be considered a more general formulation of the Voyiadjis and Shi theory (1991).

Thick shells have a number of distinctly different features from thin shells. One of these features is that in
thick shells the transverse shear deformation may no longer be neglected. In a number of particular cases of
loadings the radial stress distribution of thick shells is very important and needs to be incorporated in the
shell analysis. A third important distinction between thick and thin shell analyses is that in thick shell
analysis the initial curvatures do not only contribute to the stress resultants and stress couples, but also
result in nonlinear distribution of the in-plane stresses across the thickness of the shell.

It is not difficult to incorporate transverse shear deformations in shells. This can be accomplished fol-
lowing the work of Reissner (1945) for the plate theory. Nevertheless, it is not an easy task to incorporate
radial stresses in thin shell theory and to obtain nonlinear stress distributions through the shell thickness in
order to describe the behavior of thick shells. The attention in the previously developed shell theories was
focused on the two-dimensional shell equations together with maintaining a linear stress distribution
through the shell thickness (Flugge, 1960; Niordson, 1985). It appears that refinement of the stress dis-
tribution in thick shells has not received much attention with respect to the inclusion of radial stresses. The
theory of thin shells may provide a good estimate of the strain energy for some problems in thick shells.
Nevertheless, it cannot provide an accurate distribution of the stresses through the thickness (Gupta and
Khatua, 1978). This accuracy is imperative from an engineering point of view.

The formulation procedure for the proposed shell theory is based on the following:

. assumed out of plane stress components that satisfy given traction boundary conditions;

. three-dimensional elasticity equations with an integral form of the equilibrium equations;

3. stress resultants and stress couples acting on the middle surface of the shell together with average dis-
placements along a normal of the middle surface of the shell and the average rotations of the normal
(Voyiadjis and Baluch, 1981).

N —

It is well established that curved beams exhibit a nonlinear circumferential stress distribution through the
thickness. In the proposed shell theory, all the in-plane stresses exhibit a nonlinear distribution through the
thickness. This is primarily due to the incorporation of the initial curvature effect in the theoretical for-
mulation of the proposed shell theory. The nonlinear stress expressions given here are compared for specific
examples to those obtained through the three-dimensional theory of elasticity.

The resulting constitutive equations of shells reduce to those given by Flugge (1960) when the shear
deformation and radial effects are neglected. In this case the average displacement is replaced by the middle
surface displacements. However, the resulting equations are slightly different from those given by Sanders
(1959), Koiter (1960) and Niordson (1978). This is primarily because the so-called effective stress tensor and
effective moment tensor are used in the derivation of the constitutive equations instead of the usual stress
tensors (Niordson, 1971).

The proposed shell equations can be conveniently used in the finite element analysis.
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2. Theoretical formulation of the refined theory of thick spherical shells

2.1. Displacement field

The following out-of-plane stress components are assumed:

where

(n/r)’ =1 (n/r)’ =1

0, = pi+ Do (1)

z

C1 (&)

z\ 3 2z\?
To: = (14—})%[1— (7) + 1 i c Poo (4)
z\ 3 2z\? r/r) =1 r/r)? =1
Tgz = (1‘*‘]—{,)%[1— (7) ] +7( 2/0)1 Pdﬁ‘*‘i( 1/c)2 Do (5
r=R+:z (6)
where
. radial stresses
Ty, Ty transverse shear stresses (first subscripts—0 and ¢ denote the direction of the normal to the plane
on which stresses are acting; second subscripts—z denote the direction of the stresses)
D, Do distributed radial loads on the inner and outer surfaces respectively (z = —4/2 and z = h/2)
Poi» Poo  distributed loads along the 6 direction, on the inner and outer surfaces respectively
Dei» Ppo distributed loads along the ¢ direction
ry, o radius of curvature of the inner and outer surface respectively (Fig. 1)
R radius of curvature of the mid-plane (Fig. 1)
0o, Oy transverse shear forces
h thickness of the shell

Expression (1) depicts the radial stress distribution obtained from the elasticity solution for thick spheres
subjected to constant radial loads at both surfaces z = —#/2 and z = h/2. The normal stress o, is ignored in
the analysis of thin shells. Egs. (4) and (5) express the transverse shear stress as obtained for a rectangular
cross-section, modified by the term (1 +z/R), due to the fact that the cross-section is not rectangular but
exhibits a curvature. We notice that the modification applied here is different than the one most commonly
used, i.e. (I —z/R), see Ugural (1981). This is due to different orientation of z axis which points outwards
here. We therefore apply the usual modification term (1 — z/R), and change the sign of z which is negative
below the mid-section, obtaining (1 4+ z/R). The assumed stress field (Eqs. (1)-(5)), satisfies the following
boundary conditions:
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Fig. 1. Spherical shell element.

0. = P, atz="hn/2
Top = Ppo At z=h/2
T.0 = Poo atz="n/2
0, = —p atz=—h/2
T = —pgi atz=—h/2
T90=—-ps atz=—h/2

Using Hooke’s law for a linear elastic material, we obtain the transverse normal strain ¢, in terms of the
stresses as follows:

1
& = 5[0 — (o0 + 04)] (8)
The sum of (g9 + 04) can be written as indicated below:
12(My + M,
Go+ 0y = (ﬂh—3¢>z )

Eq. (8) was first used by Reissner (1975) to modify the expression for the transverse displacement w.
Substituting expressions (1) and (9) into Eq. (8), we obtain
(rn/r) =1 (n/r) -1 12v

: o = — (Mo + M,
C| p+ C p h3( 0+ ¢)Z

ow 1

oz E

(10)

Integrating Eq. (10) with respect to z yields the following expression for the displacement w:

1

3 3
(rz/rzl - 1p'+(r1/’22 _ 1}70_%(]\46 +M¢)Z‘|d2 (11)

w(0.6.2) = wi(0.6) + 1 |
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Denoting
M = (My+ M,) (12)
and representing 1/(R + z) as a power series:

1 1 z Z2

R+z R R'® (13)
we have
- 1 [ p r 327 Do r 32 622
w0.6.9 =09+ {2 o+ 2 (- 30N+ 2o A (--35) - Zu) aa)

In the classical theory of bending of thin shells, the term z/R and its higher-order terms are neglected. In the
present formulation, the term z/R is retained but all its higher-order terms are neglected. Eq. (14) is the
resulting expression for w(0, ¢, z).

In order to obtain consistent assumptions for the displacements u(6, ¢,z) and v(0, ¢, z), the following
strain—displacement relations are used:

ov 1 Oow v Ty:

-4 7 =% 1

=T R10% Rtz *TG (15)
1 6w+6_u_ u _ Tt (16)

(R+z)sing 00 ' &z (R+z) =~ G

where u, v, w are the displacements along 6, ¢, z axes respectively.

Substituting for the appropriate shearing stress from expressions (4) and (5) into Eqgs. (15) and (16), and
integrating both expressions with respect to z, we obtain the remaining components of the displacement
field:

Oy 47 1 Owp z2

(0.9.2) = (1+ /R un(0.0) + 20235 | - s B (%
v 1 M, 3z 1 1 op[ 2 22 n (2 72
Y ([ . 1 A
ERh? Rsin¢ 00 2R Ecy Rsin ¢ 00 2 3R R\ 2 OR

L ! 9Po ,Zj+2723+ﬁ Zj,E +p0i _ +iz+ﬁ fzizz

EcRsing 00 | 2 3R "R\ 2 6R G| “T2RTR\"T R

2 3 2
Poo B Z_ I"_l _2i
+Gcz[ SRR ( 2 )}} a7

_ [N 472 1 dwy 22 2v 1 oM 3z
v(0,¢,2) = (1 +Z/R){UO(07 o)+ 2Gh” 3 2 R 0¢ TR +Eh3 R 3¢ Z {1 2R
1 1 0p; 22 n 273 n r (2 17 1 1 9p, 2 n 273 n (2 77
EciR3p| 2 3R "R \2 6R EROp| 2 3R "R\ 2 6R
2 3 2 2 3 2
Do z r 2z Poo z r 2z
Lot | 2 (2 Lo | _ = (= 1
+Gc1[ Z+2R+R3(z R)]Jr(;cz[ Z+2R+R3(z R)]} (18)
In the shell theory that follows the variations of the distributed loads pgi, pso, Poi, Poo are omitted for

simplicity and conciseness. The reader may choose to include them by following the procedure outlined
below.
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2.2. Stress components

In order to obtain the remaining stress components, the following three-dimensional stress—strain
relations are used:

E \J
_ 1
(2 (1_‘)2)[80—"-\)6(1)}-1-1_‘)0'2 ( 9)
E 4
%*m[&ﬂrvso}Jrl_vﬂz (20)
Top = GV0¢ (21)

together with the following strain—displacement relations:

1 Ou w
4= R+z)sng a0 (R+2) )Ctg‘i’ R+- (22)
1 v w
““Ri2dop Rtz (23)

o O S
% = (R1z)sing 00 ' (R+2) 0 (R+2)

ctgd (24)

Substituting for the displacements u, v and w from Eqgs. (14), (17) and (18) respectively, into expressions
(22)—(24) and substituting the resulting strain expressions into Egs. (19)—(21), we obtain the following
expressions for the stresses:

_E 1 Quy cos¢ vov, @z 472 1 00y cos¢ v 004
=T {Rsinqﬁ 80+Rsin¢vo+R6¢+2Gh{3 w2 || Rsing 20 T Rsing 2’ TR 0
1 z? 2y 1 3z 1 1 22 223 B[P Tz
20 & e e -3 e e - A el
“‘1{ R(Z R>W0+Eh3RZ<1 ZR)M EclR[ 2+3R+R3<2 6R>}p
11 2 22 (2 77 Dgi COS @ 2 272
‘E—CZE[‘EH—R*F(T@H%]+—Gclein¢[ +ﬁ+ﬁ( 7)}
PpoCOS Zon(, 2\, ey [ Lfp[  n( 32
+Gcstin¢>[ el RO T E e TR 2R
3 2 3 3
Do 7 3z 6z \ Di r Do Ty
Bot 2 =M i 1]+ —1
Jrcz{ Z+R;<Z ZR)} Vo3 }]}+l+v C1<(R+z)3 >+cz<(R+z)3 )]
(25)
where
2 2
£ = 1 0 cos¢p 0 v O (26)

Rsin> ¢ 00°  Rsing 3¢ ' R o4’
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_E 1 Quy vcosg 1dvy =z 477 v 00y vcos¢
0¢_1—v2{Rsin¢ 20 TReing™ TR 3¢ " 26n {3 77 || Rsing 00 " Rsing 2
100, 1/ 2 w1,/ 3
LN R . 2 a1 - 2E \m
TR a¢>}+ [ R(Z R)"V Ew R 2R
L[ 220 AR ] [ 2 20 A2 7
EaR| 2 3R "R\276R )P EaR| 23R "R\2 6rR )P
wacosg [ 2 A (. 2\] wwesp[ 2 A (22
+Gc1Rsin¢>[ PR R )| TGarsng | FTRTREV TR
I+v 1 (p I 37 Po I 32 6z?
TR ) [W0+E{cl[ TR 2r)| T | T TR G 2r) T Y
A 3 3
RN iy (s B N [y (27)
L+vier \ (R+2) ¢\ (R+2)
where
v O® vcosp O 1 @
SV O yeese @, 1 O 28
Rsin® ¢ 06> Rsing 0¢ R ¢’ 28
and
B 1 Ovy 10uy wupcosg z 472 1 00y 100y cos¢
W’G{Rsin(p 30 "R3p  Rsing P26k | W ||Rsing 90 "R 0¢p  Rsing <
1 z2 2v 1 3z 11 22 23 i (z
] [ Al1-Z - — | -2 NI
+ 3{ R(Z R) "t R ( 2R> EclR[ FRET I R*<2 R)]
1 1] 2 22 /2 772 Dyi COS ¢ 2 2z
_E_QE[_EH_R*F(E_?R)}”"] +—G01Rsin¢[ +ﬁ+R3( ‘7)}
Do COS P A 222
Do P09 z sl 2
+GcQRsinqb [ +2R+R3 R (29)
where
2 0? 2cos¢p 0
A= - — 30
3" Rsing 000¢  Rsin’ ¢ 00 (30)
2.3. Stress couples and stress resultants on the middle surface
Using the definitions of the stress couples:
B2
M(,:f/ agz(1+ )dz (31)
—h2
h/2 .
My, = — 1+= 2
¢ /h/20'¢2( +R>dZ (3 )
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) -
M, :—/ Tz 1 +—= )dz 33
" Y ( R) (33)

We now substitute the expressions for stresses from Egs. (25), (27), (29) into the respective relations for the
stress couples to obtain

1 Quy cos¢ v 0v 6 100y cos 10} v 00,

My=D{ ———— -2~ —— e — — =2

’ { R%sin ¢ 00 R251n¢ R2d¢ 5Gh|Rsing 00 +Rs1n¢Q¢+R 0

1, 9vh 3v ) 1 1] A r
AT (112ER3 - 10ERh>A‘M+_ R [4013 (1 g )| Aip
3

1 1 # r psicosd 1 r 32
—— | —(1-4-L)|43p, + 72 S §
+Ec2R[40R( R3>} 7ot Rsing Go || R 40K

0 1 3 2 1
Procos¢ 1 [y i 3G LEvIpT, g gy
C1 R3

3754

Rsing Ge| R 40R?| " ER
3
Po "

T Rlsing 00 Rising " REdp  5Gh

1 9vh 3y 1 1] R 3
A AL A S TV S 1-42) |2
TR 2W0+<112ER3 10ERh> Mg [4OR< R3>] 2P

1 1] R I vp-cos¢ 1 B 3K
S iy (R0 W SR itk i [
+Ec21'e[40}e< R3)} Pt RGng G| R 4R

R 04

v Ouy vcos¢ 1 Qv 6 v 00y vcos¢ 16Q¢
M, = -0
¢ { [Rsmd) o0 JrRsinqbQ R

vpgocosp 1 [ 1 3K l+v "o
Rsing Ge, {1 B wr| TER o' 3<1 2v)
3
Po _hog o
+Cz {lJrv R3(1 2V)H} (35)
and
1y _Dl—v 1 avo_i%_ cos ¢ _L 1 6Q¢ l@_ cosqbQ
%=FT57\ T Resing 00 R2 04  RisingC SGh |Rsing 00 R 0p Rsing =

1 9vh 3v 1 17 # 3
2 vV N ey L 2,
TR (112ER3 10ERh> MR [4013 (1 41&)}'3
1 1 # " poicosd 1 B 3k
— | ——(1-4 Ape+ it — |1 =2~
TEa R {40R( R3>} Pot Rsing Ge { 3 4OR2}
IM 1 1— r_13 _ 3_}'2 ) (36)
Rsin¢g Gc, R  40R?
Substituting for the stresses gy, o4, and 74 from Egs. (25), (27), (29) into the following definitions for the
stress resultants:

h/2 -
N, :/ og|1+=)dz 37
Y YA "( R) (37)
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/2 -
N, :/ gyl 1 +=)dz 38
= Lo ¢( R) (38)
h/2 -
N, :/ Tl 1 +—= )dz 39
W=, eqs( R) (39)

we obtain the following expressions for the stress resultants:

No— Eh 1 au0+ cos ¢ . v 0vg h 1 0Qy cos¢ 0 +v 00y
71—y Rsing 00 ' Rsing ° R O¢p 10GR |Rsing 00 ' Rsing=" " R 0¢
vh 1 h? r 1 h? &
M — | (12 | s — | = (1 =) | 4%p,
soerz ™M g [2413( R3)] 1p+Ecz[24R( R3>] 1P
_psicosd 1 [ B\| _Ppocosg 1 [ A n I+v
sng G [24132 T+ 2 sing Ge |2ar2\! 2R3 )| TR
3v(l 4 v) v(1 =) [ p I Do "
"R M E o) T e (40)
_ Eh v  Oup vcosg 1 dvy h v 00y vcos¢ 1 00,
N‘”_l—VZ{Rsin(p 50 "TRsing ™ TR 3¢ T 10GR {Rsinqﬁ 30 TRsng 2 TR 34
vh 1 h? " 1 h? r
e — (=2 2 —— | (1 =2 ) | 43,
soerz M ke, [24R( R3)} Pt g {241%( R3)} 2P
_ppiveosg 1 [ K \| _peoveos¢ 1 [ A n 1+v
sng  Go [24132 T2 sing  Go |24\ TR )| TR
3v(l 4 v) v(1 —v) [ p r Do r
ek M |la\UTe )Tl e (“41)
and
Now — Eh I—v 1 % l%_ cosq’>u+ h 1 6&+1@_ cosqﬁQ
1oy 2 Rsing 00 ' R d¢ Rsing _  10GR |Rsing 00 'R d¢ Rsing ="
vh 1 [ # " 1 [ A P
M — | (12 )| A — | (1 =21 ) | 4%p,
soerz M T B, {24R< R3>] 3erE(:Z[24R< R3>} 3
peicosd 1 W I Ppocosd 1 h? "
- - 1+222)] - - 1+2-1 % 42
sing Gce {24R2 + R? sing Ge, | 24R? + R3 (42)

2.4. Average displacements u, v, w and rotations ¢,, ¢,

For identifying the proper boundary conditions of the derived shell theory, average displacements u, 7,
w, and rotations ¢y, ¢, are introduced. The rotations are for sections 0 = const and ¢ = const, respectively.
We first define transverse shear resultants as

Q(‘? = T'))Uz (43)



3756 G.Z. Voyiadjis, P. Woelke | International Journal of Solids and Structures 41 (2004) 3747-3769

where T is given by

T = 2Gh (45)
and yy,, 7,, expressed similarly to Egs. (15) and (16):
1 ow Ou u
= —_— 4
Ve = Ry z)sing 00 oz (R+2) (46)
ov 1 ow 3
V¢Z_§+(R+z)$_(R+z) (47)

The average transverse displacement w is obtained by equating the work of the transverse shear stress 7,
due to the displacement w to the work of the transverse shear resultant O, due to the average displacement
w (Voyiadjis and Baluch, 1981):

h/2 2
Tow( 1 +=)dz = Q4w 48
/m (1478 = 05 (48)

One could choose to equate the work of the transverse shear stress 7y, due to the displacement w to the work
of the transverse shear resultant Oy due to the average displacement w instead, which yields the same
resulting expression for w, given by

3y Ivh 1 W 2 1 ¥ @
W = — M B —— ————21————] o 49
e <10Eh 112ER2> 10 REc; B~ 10 REc, R°Y (49)

Similarly to obtain u, v, ¢, ¢, we use the following equations:

o) 5
opu( 1+ = |dz = Nyt + M, 50
[ (1 5)d = v g, (50)

h/2
/ a¢u(1+%)dz=N¢a+M¢¢¢ (51)
—h/2

The resulting expressions for u, v, ¢, ¢, are given by

_ 1 W1 op " 1 op, I
“””zz?m@[?ﬂ(l‘ﬁ)*a 30 (l‘ﬁ)] (52)
1 K[ 1 op 3 1 op, r
7= — | =12 — ey L
0 U°+ER24L1 a¢>< R3>+c2 aqs( R3>] (53)
1 ow 6
%= Rsing 00 5GhY" 59
1 ow 6
¢¢:E@—EQ¢ (55)
Making use of Eqgs. (43) and (44) we can write the following:
1 ow
o (56)

:Rsind)@_yoz
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1 ow

¢¢ = R % = V- (57)

The remaining stress resultants and stress couples can be expressed in a more concise manner in terms of
U, 0, W, 7, 74, as follows:

My=p|—_Oof_L o _, t¢ v o (Low .
"= Rsing 00 \ Rsing 00 ' ct& Ra¢> Ve ) TRag\ RO

B 1 @7ctg¢> v 0D
Rising 0 R* | R0

Mo—pl—r 9o 1 9 +Ct¢ 1 ow Jroflaw.
*~ 7| Rsing 00 \ Rsing 00 '* 8P\ Rog ") TRog\Rap T

v Ou vctg¢p_ 1 0v

Rsng 0 R . R3¢

My, —pr=vfrto (L ow ) gL )L o flow
=57 I Rog \ Rsing 00 ") TREP\ Rsing 90 '*) " Rsing 00 \ Rop ¥

ctgqs( 1 aw> 1 o0 16ﬁ+ctg¢

+ klpl + k2po + k3p¢1 + k4p¢0 (58)

+ kipi + kapo + Vkspyi + vkapgo (59)

1—v

1-
+ + k5P1 + k6po + k? 2 P¢1 + k4 2 pd)o

R \Rsing 00 | R2sing 00 R? d¢
(60)
Eh 1 ou 1 _ vor 1+ Vo 1 0Oy, ctgo Vv 0y,
N = — _— — _—— - 9 —_
" =1=v |Rsing o0 TR Ra, T R [stmd) 0 TR TR 5
+ kipi + kspo + kopgi + kiopgo (61)
Eh v Ou 1ov 1+ v v Oy, vetgd 1 Oy,
Ny = t il -
¢~ T1_v |Rsing 30 R ng&”*Raq)+ R {stinqﬁ 0 TR TR 3
+ kapi + kspo + Vkopyi + vkiopgo (62)

—ctgou

Eh [(1—v 1 65 1 ou 1—v 1 Oy, ctge 1 oy,
Nog = D _dee, T
o 1v2< 2 ) Rsing 30 'Rdop R + ( ) >[R2sin¢> 0 'R TR aqs]

1-— 1—
- ( 3 V>k9pm+ <—2 v>k101790 (63)

I+v
ERC1

where

ki =D {l—kv—]}%(l—b)} (64)

PAES] PO
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ct r
k3=DR§f? (1__23 (66)
ctgd "
=D 1-L
K RGcz( R (67)
1—v 1 [ R ”
ks =D5 Ere, [W(l—“ﬁ)] (68)
1—v 1 h? P
- —_4-L
ks = D5 FRey [40 ( R3>] (69)
Eh P l+v v(l+v) r%
k7_1—v2[10REc]F R Ecq (l_ﬁﬂ (70)
E 2 3 1 1 3
ke — h R 1+v vl +v) _n (71)
1—v2 | 10REc, R®° R Ec, R
P N P (72)
T 12| Ge |24R? R3
ho = Eh_[cted [ F () o (73)
Y1202 | Ge, | 24R2 R

These resulting constitutive equations reduce to those given by Flugge (1960) when the shear deformation
and radial effects are neglected. In this case, the average displacements are replaced by the middle surface
displacements. The transverse shear forces Oy, O, are obtained in this case from the equilibrium equations
in terms of the stress couples.

An alternate set of expressions for the stress couples may be obtained in terms of the average dis-
placements #, v, w, and corresponding rotations ¢, ¢,. The following relations give these equations:

1 0¢, v ¢y 1 o ctgg_ v 0v
My =D B
0 [Rsmqﬁ 0 'R’ ¢¢ 8Pt R op Rsngdl R L Rag| hmtkr
+ kapgi + kapgo (74)
v ¢, 0y v Odu_ vetgp 1 0v
My =D i -2 s+ kapo
¢ [Rsmqﬁ TR ¢+R 30 Rsmgdl R Rog| lmthn
+ Vk3pyi + Vkapyo (75)
1- 16¢0 0 ctg<j> 1 ov 1 om ctgqﬁ
Myy = D—— —r - = _ -
09 | 2 R %t et ring 00 T R P T Rsins 0 R0

1—v 1—v
+ kspi + kepo + k3 5 Pii + Ky 5 Poo (76)
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2.5. Equilibrium equations and boundary conditions

A free body diagram is used to derive the equilibrium equations. For the case of small deformation
analysis, the shell equilibrium equations are given by (Flugge, 1960):

0 ON,

ad)(Ngbsmqb)—l—W—Ngcosq’) Qpsing + Rsin¢ppy, =0 (77)
ONy

6(1) (No(p sin ¢) + 0 + Nygcos ¢ — Qypsing + Rsingppy = 0 (78)
Nysin ¢ + Nysin ¢ + — QU ad’ (Q¢ sin¢g) — Rsingp, =0 (79)
% (M¢, sin ¢) + 600(!) —Mycos¢p —RQ,sing =0 (80)
0 oM,
% (Mg sin @) + 20 +M9¢ cos¢p — RQpsing =0 (81)
M My,

Ig’” 154 Nygo — Nog (82)

In the above equilibrium expressions, p,, py, p. are the equivalent distributed loads acting on the middle
surface of the shell. Eq. (82) is identically satisfied consequently reducing the number of equilibrium
equations to 5. The stress resultants and couples may be expressed in terms of either u, @, w, y,, 7, or u, v, W,
¢p, ¢4 We therefore have five unknowns to solve for from the five remaining equilibrium conditions
(77)-(81).

The static and kinematic boundary conditions may be expressed in terms of either u, v, w, 7, 74 or 4, v,
W, ¢y, ¢4, together with the use of the constitutive equations (58)—~(73). The boundary conditions are given
as follows:

1. if edge (0, ¢) is simply supported the BC’s may be written as
W(Oa Cf)) =0; ¢¢(Oa ¢) =0; M(1(0> (15) =0

2. if edge (0, ¢) is clamped the BCs may be written as
w(0,0) =0; ¢4(0,¢) =0; Py(0,¢) =0; u(0,¢) =0

3. if on the edge (0, ¢) stretching of the mid-plane is prevented, BCs may be written as u,(0, ¢) = 0;
v0(0,¢) =0, and if additionally the pressures p, are uniformly distributed, i.e. % %— 0 then
#(0, ¢) = 0; 5(0, ¢) = 0

4. if edge (0, ¢) is free to stretch in 0 direction, then vy(0, ¢) = 0; Ny(0,$) =0

5. if edge (0, ¢) is free the BCs may be written as

My(0,¢) =0;  0p(0,¢) =05 Mpy(0, ) =05 Ny(0,¢) =0;  Nyy(0, ¢p) = 0.
2.6. The nonlinear nature of the stress distribution

The resulting nonlinear distribution through the thickness for the in-plane stresses in the proposed thick
shell theory is due to the incorporation of the initial curvature of the shell, and the three-dimensional
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constitutive equations as obtained from relations (19)—(21). This effect becomes highly pronounced in thick
shells by changing the magnitude of the maximum stress significantly as compared to the linear stress
variation theory.

In the expressions for in-plane stress components oy, o4, To¢ given by Egs. (25)—(29), nonlinear terms
such as 1/(R + z) and z*/R are incorporated. Consequently, the stresses given by the present theory have a
nonlinear distribution along the thickness of the shell. Let us consider the simple case of a constant normal

pressure and investigate the corresponding stress distribution of g, through the thickness. In this case
we have

% =1_\Rsing 0 ' Rsing" "R 26k W R\ 3R W

v 00y vcos¢ 1 00, [ 1 22 2v 1, 3z
% L 1) P R Y R Y
X [Rsin(j) 30 TRsmg T T TR ETR M T En RE

vpgicosp [ 2 (27 Wpgocosp [ 2 (27
+Gc1Rsin<,/>{ FPRTR TR )| T Gorsing | F TR TR

1+v 1 ps r 37 Do " 37 62
TR+ |:W0+E{Cl|: ekt T TR P A Y
. 3 3
L L | ) e Sy (83)
¢\ (R+z) ¢\ (R+72)

In Eq. (83) all the terms are nonlinear in z except for the terms associated with - p %L(?, %ﬁ, a;;;o_

The stress distribution obtained using the presented theory will be compared with the elasticity theory.

E { 1 Ouy vcos¢ 1 dv, z [3 472 3z<1 2z 222”

v
1+v

3. Equivalent formulation for the thick plate theory

It is relatively simple to reduce the proposed shell theory to a thick plate theory. As R approaches infinity
the stress resultants and stress couples reduce to

leji—hvz<2—z+\’g—f]> + ki (pi + po) (84)
R <2—y+2—> o+ (53)
v a3 56)
0. = (Zj—@) (87)
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M=0( v ) bkt ) (59

M, _D<ai+ >+k2(pl+po) (90)

MW:MW:Dlgv(aaﬁwaa?) (91)
where

k= 2(1V}_’v) (92)

b=V (93)

We note that the present shell theory reduces to exactly the same equivalent thick plate theory as the one
given by Voyiadjis and Shi (1991).

4. Examples
4.1. Thick sphere subjected to uniform pressures
We investigate the stress distribution of o, for a thick sphere subjected to uniform pressure p; = 5 kPa,

and p, = 4 kPa (Fig. 2).
In this case we have

oM,

= 4
v=0p =3 " =0 (94)
and
w=w(z) (95)
The stress o, using the proposed theory is expressed in this case as follows:
_E Di r 3z Do r 372
%_R—i—z{wo—'_cl[ Z+R3<Z 2R)} —|—sz z+elz—5 % (96)
The corresponding exact elasticity solution for this problem is given by Lame (1833):
3 3
Do " D )
0y = 2+ 24— 97
T 20 ( (R+z)3> 2¢cy ( (R +z)3> ®7)
From the theory of elasticity we have
R
Wo = 209l (98)
where

3 3
__Po noy_ A n
Opl._g = 265 (2 +R3) 26 (2 +R3> (99)
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P

(o]

Fig. 2. Spherical shell subject to internal and external pressures.

Substituting for w, from Egs. (98) and (99) into expression (96), we obtain the following expression for ay:

R Do " i " 1 i r 32
- - (A B G | P P
% R—i—z{ 202< +R3> 2w TR )| TRz B\ TP TR \F T 2R
3 2
Do & 3z
Y L 100
2 (-om(:-37)] (100

It can be easily shown that ¢, obtained from Eq. (100) for the case of z = 0 is identical to ¢, obtained from
the elasticity solution expressed by Eq. (97), for the same case, i.e. z=0 (Table 1). It is also worthy
to mention that, as expected in the case of a sphere o4 = ay.

Gupta and Khatua (1978) in their derivation of a thick shell superparametric finite element proposed
a modification in the expression for the circumferential stress o,. Their modified expression is given by

R
oy = o
¢ R+z

0 (101)

where o is the average hoop stress. We note that Gupta and Khatua’s scheme cannot distinguish the
difference between the internal and external pressures.

As shown in Table 1, the present theory is very close to the exact elasticity solution. In order to show the
improvement in the present theory versus the classical shell theory, the problem of spherical container
subject to uniform internal pressure p; = 5 kPa is analyzed. Fig. 3 shows comparison of the exact solution
with classical theory by Niordson (1985), and the present theory.
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Table 1

g, distribution for spherical shell
2 ” r/r h=r —n c o Elasticity o, (kPa) Present theory o, (kPa)

r=nr r=nr r=nr r=rnr

3 39 1.3 0.9 -1.2 —-0.545 19.7782 15.2782 19.712 15.315
3 4.5 1.5 1.5 -2.4 —-0.704 14.18421 9.68421 14.01 9.7539
3 5.1 1.7 2.1 -39 -0.796 11.95004 7.45004 11.633 7.5458
3 6 2 3 -7 —-0.875 10.42857 5.92857 9.8571 6.0476
3 6.6 2.2 3.6 -9.6 —-0.906 9.899254 5.39925 9.1463 5.5253

Normalized results
1.05

075 \

—e— Elasticity-exact \

0.55 .| —®— Present theory
—a— Classical-Niordson

Normalized Stresses

0.45 T T T T T T T T )
0 0.5 1 1.5 2 25 3 3.5 4 4.5

Thickness of the shell

Fig. 3. Normalized o, for spherical container subject to internal pressure.

As expected the results deviate form the exact, as the thickness of the shell increases. However, there is a
significant improvement in the results obtained using the present theory when compared to the classical
shell theory, which yields large errors for thick shells.

The error in the present work proves to be much smaller than in the case of classical thin shell theory.
The later is built on Kirchhoff-Love assumption, which as shown by Niordson (1971) has relative error of
[h/R + (h/L)’]. We therefore expect the error of the classical theory to be very close to the expression given
by Niordson: [/R + (h/L)’]. Comparison of errors is shown in Fig. 4.

The classical theory has an error that is approximately equal to the Niordson error. The present theory
also shows some loss of accuracy as the thickness of the shell increases. It is however much smaller than the
Niordson error, as shown in Fig. 4.

4.2. Hemispherical dome under uniform gravitational pressure

We consider a simply supported hemispherical dome of radius R = 10 m and thickness ¢, subject to
gravitational pressure p = 0.5 kPa (Fig. 5).
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Comparison of errors

16
14l —e— Niordson error _»
’ h/R+(h/L)A2
—#— Classical theory -
12 +— Niordson
A Present theory
S 1 1
o
£
W 08
0.6
0.4 4
0.2 4
0 — = : : : : : : :
00 0.5 1 15 2 25 3 3.5 4 45

Thickness of the shell

Fig. 4. Relative errors.

v

-~ >

Fig. 5. Hemispherical dome.

The bending stresses reach maximum at the top of the dome, i.e. ¢ = 0°. If the shell is thin, they are
however considered negligible and the loading is entirely resisted by the membrane action of the shell. As
the thickness increases, bending stresses with nonlinear terms start to play an important role.

We will investigate gy stresses at ¢ = 0°, i.e. at the top of the dome. The results of the analysis given by
the classical theory and the present are shown in Table 2 and Fig. 6.

Analysis of the above results leads to the same conclusions as in the previous example. The present
theory shows very good agreement with the classical one for the case of thin shells, while there is an
improvement in the treatment of thick shells.

4.3. Morley’s spherical shell

The following example is used as a standard problem to test the accuracy of the shell theories and the
finite elements built based on these theories (MacNeal and Harder, 1985). The problem represents a
hemisphere with four point loads alternating in sign at 90° intervals on the equator, which is a free edge (see
Fig. 7).
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Table 2

gy distribution for spherical dome
Thickness, ¢ (m) Classical-Niordson oy (kPa) Present theory g, (kPa)
0.06 —25.8065 -25.13
0.1 —-15.7143 —-13.93
0.14 —11.3553 -9.409
0.18 —-8.91473 —6.965
0.22 —-7.3501 —-5.661
0.26 —6.25943 —4.906
0.3 —5.45455 —4.375
0.4 —4.13462 -3.226
0.6 -2.79412 -1.925
1.0 -1.7 —-0.85

Hemispherical Dome
0 T T
04

) /
15 / —e— Classical-Niordson ||

Stresses

—=— Present Theory

-20

-25 4

-30
Thickness

Fig. 6. Comparison of results.

Both membrane and bending strains contribute significantly to the radial displacement at the point of
load application. The value of the displacement, 0.094 under the load, published by MacNeal and Harder
(1985), is used as a reference solution. Steele (1987) and Simo et al. (1989) stated however that the analytical
solution based on the asymptotic expansion yields an answer of 0.093. The present theory yields the value
of 0.0929, which once again proves the current work to be accurate.

We also investigate the transverse shear stresses for the problem above with different thicknesses for the
shell. We compare the values obtained here with those by Mindlin/Koiter—Sanders theory in Table 3.

The normal stresses o, are shown here to compare the magnitudes of normal and transverse shear
stresses. The last column in Table 3 gives the ratio of 7,./a,. It shows the increasing importance of the
transverse shear stresses with the increase of the thickness of the shell. For the first shell analyzed, with a
thickness of 0.04 in, z,. is only 0.0068 of the normal stresses o,, whereas the same ratio for the thickness of
0.9 in becomes 0.12. It shows the expected pattern of the transverse shear stresses becoming more significant
in the case of thick shells.
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R=10

t1=0.04

E =6.825x10’

F=1.0 for quadrant
Reference solution
Deflection under load: 0.094

Fig. 7. Morley’s sphere.

Table 3

Transverse shear and normal stresses for hemispherical shell
Thickness, ¢ (in.) .. (psi) 7,. (psi) o, (psi) Ratio 7,./0,

Mindlin/KS  Present Mindlin/KS Present Mindlin/KS  Present

0.04 -38.71 -38.5 -22.38 -22.21 -5691 —5658 0.0068
0.1 -15.11 -14.98 -6.7 —6.62 -965.7 -954.6 0.0156
0.18 -8.131 -7.96 -3.596 -3.51 -305.4 —-298.303 0.0266
0.28 -5.047 -4.97 -2.417 -2.37 —127.3 -125.6 0.0396
04 -3.41 -3.19 -1.804 -1.703 -62.34 -61.63 0.0547
0.54 -2.441 -2.3 -1.42 -1.33 -33.93 -33.26 0.0719
0.7 -1.824 —1.642 -1.152 -1.121 -19.92 -19.67 0.0915
0.9 -1.376 -1.27 -0.9376 -0.926 -11.82 -11.68 0.1164

The present theory provides very good approximation of the transverse stresses which of particularly
great importance in the case of thick shells.

4.4. Circular arch

Another benchmark problem testing the accuracy of the shell theories is cantilevered circular arch
subject to in-plane shear (MacNeal and Harder, 1985). One end of the arch is fixed against displacements
and rotations, and the other end is free. Inner radius =4.12, outer radius =4.32, thickness =0.1, Young’s
modulus = 10E6, Poisson’s ratio=0.25. Two unit forces are applied at the free end of the arch (Fig. 8).
Vertical deflection of the free end is investigated here. The analytical solution of this problem stated by
MacNeal and Harder (1985) is 0.08734. The deflection resulting from the present theory yields the value of
0.08074, which for the problem above is a very good approximation of the exact solution.

4.5. Thick cylinder subjected to uniform pressures

The current theory can be reduced to the case of cylindrical shells, as given by Voyiadjis and Shi (1991).
Therefore, the Voyiadjis and Shi (1991) formulation can be regarded as a special case of the present theory.
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(==

Fig. 8. Circular arch.

To show this we now investigate the stress distribution of ¢, for a thick cylinder subjected to uniform
pressures p; and p,. Similarly to the previous example, we have

oM,
v=0, =5 =0 (102)
and
w = w(z) (103)
To reduce the current theory to the case of cylindrical shells we adopt
u v w
R i = —_——= —= — = 1 4
sin 06 = d0x and R-R-R 0 (104)

Considering also solutions due to Lame for thick cylinders, we can obtain the stress distribution for g4 as
given by Voyiadjis and Shi for the case of cylindrical shells:

E Pi 3 z? Do " 32
=— — | —z+=(z—= —|-z+=z—-2= 105
e R+Z{WO+ECI|: Z+R2(Z IR R A (105)
The corresponding exact elasticity solution for this problem is given by
2 . 2
S LY SR B . (R (106)
8 (R+72) C (R+2)

Table 4 shows comparison of the results of the given problem obtained by various theories with both
analytical and numerical results obtained here. The numerical solution shown in Table 4, is obtained with
doubly curved finite elements built on the present spherical theory. It shows very good agreement with the
analytical solution of the cylindrical shell problem, provided by the same theory, as well as the exact-
elasticity solution obtained by Lame (1833). It shows applicability of the present theory to not only
spherical shells but also shells with different radius of curvature in two directions. The present theory can
therefore be applied to shells of general shapes.
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Table 4
a4 distribution for cylindrical shell
r/r Winkler’s theory Elasticity-exact Present theory
Analytical Numerical
r=n r=rnr r=nr r=rnr r=r r=rnr r=n r=r
1.5 -26.971 20.607 —27.858 21.275 -27.971 20.029 -27.692 19.826
-7.725 4.863 =7.755 4917 —-7.642 4.358 -7.464 4.284
3 -2.285 1.095 -2.292 1.130 -2.105 0.925 -2.029 0.876

5. Conclusions

A theory for thick spherical shells is developed in this paper. By considering the shear strains, the
transverse shear deformations are accounted for in the resulting shell equations. In the proposed theory,
the initial curvature effect is incorporated in the stress distribution leading to an accurate nonlinear
distribution of the in-plane stresses. Through the incorporation of the radial stresses to the proposed
shell formulation, we obtain the stress resultants and stress couples associated not only with the middle
surface displacement of the shells, but also with the radial stresses explicitly. By using the constitutive
equations of the three-dimensional theory of elasticity and incorporating the initial curvature effect on
the stress resultants and couples, an accurate set of constitutive equations for the thick shell theory is
obtained.

The constitutive equations presented here reduce to those given by Flugge (1960) when the shear
deformations and the radial stress effects are neglected, while the average displacements are replaced by the
middle surface displacements of the shell. The resulting proposed equations in this paper are slightly dif-
ferent than those given by Sanders (1959), Koiter (1960) and Niordson (1978), primarily because they use
the so-called effective stress resultants and stress couple tensors. These effective stresses are used in the
variational derivation of the constitutive equations (see Niordson, 1985). However, even when both the
shear deformation and the radial stresses are neglected, the stress distributions given in the present paper
will still be nonlinear because the stresses are derived from the three-dimensional constitutive equations
given by expressions (19)—(21).

The nonlinear distribution of the in-plane stresses through the thickness for thick shells was ignored in
the past in the formulation of the theory. This is not the case in the present paper. The nonlinear distri-
bution constitutes a very important ingredient for an accurate and reliable thick shell theory.

Similar to the shell theory by Sanders—Koiter, presented shell equations are convenient for use in the
finite element analysis. The proposed theory is not only very useful in the analysis of thick shells, but also
has the potential for use in the analysis of composite shells (see Noor and Burton, 1989). This theory is also
important in applications of vibrations of shells where the shear deformation and stress distribution along
the thickness direction play an important role.

The examples given here show that the proposed theory is accurate and in good agreement with the
exact solution, and other existing theories. The classical theory of shells yields errors that could grow large
in the case of moderate to thick shells. In the present theory there is a significant reduction in error, which
is much smaller than in the case of the classical theory, based on the Kirchhoff-Love assumption. This is
clearly shown in the first example. The current work is applicable to plates (setting the radius of curvature
infinite), beams as special cases of plates, and through the use of the finite element method to shells of
arbitrary shape, with radius of curvature being different in two directions e.g. cylindrical shells as well as
arches. It is therefore general and universal and gives very good results for all of the above-discussed
cases.
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