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Abstract

A theory for thick spherical shells is presented in this paper. The equations given here do not only incorporate the

effects of transverse shear deformation but also account for the initial curvature as well as the radial stress. The pro-

posed theory presents a very good approximation for the shell constitutive equations and the nonlinear distribution of

the in plane stresses across the thickness of the shell. The later is very important for thick shell analyses. The presented

formulation is based on the following: (1) assumed out of plane stress components which satisfy given boundary

conditions; (2) three-dimensional elasticity equations with an integral form of the equilibrium equations; (3) stress

resultants and stress couples acting on the middle surface of the shell, average displacements along the normal at a point

on the middle surface, and average rotations of the normal.

The proposed shell equations can be conveniently used in finite element analysis. An application of this theory to the

finite element analysis of spherical shells will be presented in the follow-up paper.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The complete two-dimensional theory of thin shells was developed by Love over 100 years ago. Numerous

contributions on this subject have been made since then. Any two-dimensional theory of shells is an

approximation of the real three-dimensional problem. Researchers have been seeking better approximations

for the exact three-dimensional elasticity solutions for shells. In the last three decades, the developed refined

two-dimensional linear theories of thin shells include important contributions of Sanders (1959), Flugge (1960),

andNiordson (1978). In these refined shell theories, the initial curvature effect is taken into consideration in the
formulation of shell equations. Nevertheless, the deformation is based on the Kirchhoff–Love assumption, and

the radial stress effect is neglected. In the current work we will refer to all the theories built on Kirchhoff–Love

assumption, as the classical theory. The refined theories by Sanders (1959), Flugge (1960) and Niordson (1978)

provide very good results for the analysis of thin shells. The theory of Sanders–Koiter has been widely used in
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the finite element analysis of shells (Ashwell and Gallagher, 1976). However it is shown (Niordson, 1971) that

Love’s strain energy expression has inherent errors of relative order ½h=Rþ ðh=LÞ2� where h is the thickness of

the shell, R is the magnitude of the smallest principal radius of curvature, and L is a characteristic wavelength of

the deformation pattern of the middle surface. Consequently when the refined theories of thin shells are applied
to thick shells, with h=R not small compared to unity, the error could be quite large as expected. Relative to

theory of thin shells, the theory of thick shells has received limited attention by the researchers up to now.With

the increase of the utilization of thick shells to various engineering applications such as cooling towers, dams,

pressure vessels, etc. it is imperative to develop a simple and accurate theory for thick shells. Voyiadjis and Shi

(1991) developed very accurate and convenient for finite element analysis a refined shell theory for thick

cylindrical shells. The current work presents a refined shell theory for thick spherical shells, however the shell

equations derived here are based on the same assumptions as those of Voyiadjis and Shi (1991). The proposed

work can be considered a more general formulation of the Voyiadjis and Shi theory (1991).
Thick shells have a number of distinctly different features from thin shells. One of these features is that in

thick shells the transverse shear deformation may no longer be neglected. In a number of particular cases of

loadings the radial stress distribution of thick shells is very important and needs to be incorporated in the

shell analysis. A third important distinction between thick and thin shell analyses is that in thick shell

analysis the initial curvatures do not only contribute to the stress resultants and stress couples, but also

result in nonlinear distribution of the in-plane stresses across the thickness of the shell.

It is not difficult to incorporate transverse shear deformations in shells. This can be accomplished fol-

lowing the work of Reissner (1945) for the plate theory. Nevertheless, it is not an easy task to incorporate
radial stresses in thin shell theory and to obtain nonlinear stress distributions through the shell thickness in

order to describe the behavior of thick shells. The attention in the previously developed shell theories was

focused on the two-dimensional shell equations together with maintaining a linear stress distribution

through the shell thickness (Flugge, 1960; Niordson, 1985). It appears that refinement of the stress dis-

tribution in thick shells has not received much attention with respect to the inclusion of radial stresses. The

theory of thin shells may provide a good estimate of the strain energy for some problems in thick shells.

Nevertheless, it cannot provide an accurate distribution of the stresses through the thickness (Gupta and

Khatua, 1978). This accuracy is imperative from an engineering point of view.
The formulation procedure for the proposed shell theory is based on the following:

1. assumed out of plane stress components that satisfy given traction boundary conditions;

2. three-dimensional elasticity equations with an integral form of the equilibrium equations;

3. stress resultants and stress couples acting on the middle surface of the shell together with average dis-

placements along a normal of the middle surface of the shell and the average rotations of the normal

(Voyiadjis and Baluch, 1981).

It is well established that curved beams exhibit a nonlinear circumferential stress distribution through the

thickness. In the proposed shell theory, all the in-plane stresses exhibit a nonlinear distribution through the

thickness. This is primarily due to the incorporation of the initial curvature effect in the theoretical for-

mulation of the proposed shell theory. The nonlinear stress expressions given here are compared for specific

examples to those obtained through the three-dimensional theory of elasticity.

The resulting constitutive equations of shells reduce to those given by Flugge (1960) when the shear

deformation and radial effects are neglected. In this case the average displacement is replaced by the middle

surface displacements. However, the resulting equations are slightly different from those given by Sanders
(1959), Koiter (1960) and Niordson (1978). This is primarily because the so-called effective stress tensor and

effective moment tensor are used in the derivation of the constitutive equations instead of the usual stress

tensors (Niordson, 1971).

The proposed shell equations can be conveniently used in the finite element analysis.
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2. Theoretical formulation of the refined theory of thick spherical shells

2.1. Displacement field

The following out-of-plane stress components are assumed:
rz ¼
ðr2=rÞ3 � 1

c1
pi þ

ðr1=rÞ3 � 1

c2
po ð1Þ
where
c1 ¼ 1� r2
r1

� �3

ð2Þ
c2 ¼
r1
r2

� �3

� 1 ð3Þ
shz ¼ 1
�

þ z
R

� 3Qh

2h
1

"
� 2z

h

� �2
#
þ ðr2=rÞ3 � 1

c1
phi þ

ðr1=rÞ3 � 1

c2
pho ð4Þ
s/z ¼ 1
�

þ z
R

� 3Q/

2h
1

"
� 2z

h

� �2
#
þ ðr2=rÞ3 � 1

c1
p/i þ

ðr1=rÞ3 � 1

c2
p/o ð5Þ
r ¼ Rþ z ð6Þ
where

rz radial stresses

shz, s/z transverse shear stresses (first subscripts––h and / denote the direction of the normal to the plane
on which stresses are acting; second subscripts––z denote the direction of the stresses)

pi, po distributed radial loads on the inner and outer surfaces respectively (z ¼ �h=2 and z ¼ h=2)
phi, pho distributed loads along the h direction, on the inner and outer surfaces respectively

p/i, p/o distributed loads along the / direction

r1, r2 radius of curvature of the inner and outer surface respectively (Fig. 1)

R radius of curvature of the mid-plane (Fig. 1)

Qh, Q/ transverse shear forces

h thickness of the shell

Expression (1) depicts the radial stress distribution obtained from the elasticity solution for thick spheres

subjected to constant radial loads at both surfaces z ¼ �h=2 and z ¼ h=2. The normal stress rz is ignored in

the analysis of thin shells. Eqs. (4) and (5) express the transverse shear stress as obtained for a rectangular

cross-section, modified by the term (1þ z=R), due to the fact that the cross-section is not rectangular but

exhibits a curvature. We notice that the modification applied here is different than the one most commonly

used, i.e. (1� z=R), see Ugural (1981). This is due to different orientation of z axis which points outwards

here. We therefore apply the usual modification term (1� z=R), and change the sign of z which is negative
below the mid-section, obtaining (1þ z=R). The assumed stress field (Eqs. (1)–(5)), satisfies the following

boundary conditions:



Fig. 1. Spherical shell element.
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rz ¼ po at z ¼ h=2

sz/ ¼ p/o at z ¼ h=2

szh ¼ pho at z ¼ h=2

rz ¼ �pi at z ¼ �h=2

sz/ ¼ �p/i at z ¼ �h=2

szh ¼ �phi at z ¼ �h=2

ð7Þ
Using Hooke’s law for a linear elastic material, we obtain the transverse normal strain ez in terms of the
stresses as follows:
ez ¼
1

E
½rz � mðrh þ r/Þ� ð8Þ
The sum of (rh þ r/) can be written as indicated below:
rh þ r/ ¼ 12ðMh þM/Þz
h3

ð9Þ
Eq. (8) was first used by Reissner (1975) to modify the expression for the transverse displacement w.
Substituting expressions (1) and (9) into Eq. (8), we obtain
ow
oz

¼ 1

E
ðr2=rÞ3 � 1

c1
pi

"
þ ðr1=rÞ3 � 1

c2
po �

12m
h3

ðMh þM/Þz
#

ð10Þ
Integrating Eq. (10) with respect to z yields the following expression for the displacement w:
wðh;/; zÞ ¼ w0ðh;/Þ þ
1

E

Z ðr2=rÞ3 � 1

c1
pi

"
þ ðr1=rÞ3 � 1

c2
po �

12m
h3

ðMh þM/Þz
#
dz ð11Þ
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Denoting
M ¼ ðMh þM/Þ ð12Þ
and representing 1=ðRþ zÞ as a power series:
1

Rþ z
¼ 1

R
� z
R2

þ z2

R3
� � � � ð13Þ
we have
wðh;/; zÞ ¼ w0ðh;/Þ þ
1

E
pi
c1

�	
� zþ r32

R3
z
�

� 3

2

z2

R

�

þ po

c2

�
� zþ r31

R3
z
�

� 3

2

z2

R

�

� m

6z2

h3
M
�

ð14Þ
In the classical theory of bending of thin shells, the term z=R and its higher-order terms are neglected. In the

present formulation, the term z=R is retained but all its higher-order terms are neglected. Eq. (14) is the

resulting expression for wðh;/; zÞ.
In order to obtain consistent assumptions for the displacements uðh;/; zÞ and vðh;/; zÞ, the following

strain–displacement relations are used:
ov
oz

þ 1

ðRþ zÞ
ow
o/

� v
ðRþ zÞ ¼ c/z ¼

s/z

G
ð15Þ
1

ðRþ zÞ sin/
ow
oh

þ ou
oz

� u
ðRþ zÞ ¼ chz ¼

shz

G
ð16Þ
where u, v, w are the displacements along h, /, z axes respectively.
Substituting for the appropriate shearing stress from expressions (4) and (5) into Eqs. (15) and (16), and

integrating both expressions with respect to z, we obtain the remaining components of the displacement

field:
uðh;/; zÞ ¼ ð1þ z=RÞ u0ðh;/Þ
	

þ Qh

2Gh
z 3

�
� 4z2

h2



� 1

R sin/
ow0

oh
z
�

� z2

R

�

þ 2m
Eh3

1

R sin/
oM
oh

z3 1

�
� 3z
2R

�
� 1

Ec1

1

R sin/
opi
oh

�
� z2

2
þ 2z3

3R
þ r32
R3

z2

2

�
� 7z3

6R

�


� 1

Ec2

1

R sin/
opo
oh

�
� z2

2
þ 2z3

3R
þ r31
R3

z2

2

�
� 7z3

6R

�

þ phi

Gc1

�
� zþ z2

2R
þ r32
R3

z
�

� 2z2

R

�


þ pho

Gc2

�
� zþ z2

2R
þ r31
R3

z
�

� 2z2

R

�
�
ð17Þ
vðh;/; zÞ ¼ ð1þ z=RÞ v0ðh;/Þ
	

þ Q/

2Gh
z 3

�
� 4z2

h2



� 1

R
ow0

o/
z
�

� z2

R

�
þ 2m
Eh3

1

R
oM
o/

z3 1

�
� 3z
2R

�

� 1

Ec1

1

R
opi
o/

�
� z2

2
þ 2z3

3R
þ r32
R3

z2

2

�
� 7z3

6R

�

� 1

Ec2

1

R
opo
o/

�
� z2

2
þ 2z3

3R
þ r31
R3

z2

2

�
� 7z3

6R

�


þ p/i

Gc1

�
� zþ z2

2R
þ r32
R3

z
�

� 2z2

R

�

þ p/o

Gc2

�
� zþ z2

2R
þ r31
R3

z
�

� 2z2

R

�
�
ð18Þ
In the shell theory that follows the variations of the distributed loads p/i, p/o, phi, pho are omitted for
simplicity and conciseness. The reader may choose to include them by following the procedure outlined

below.
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2.2. Stress components

In order to obtain the remaining stress components, the following three-dimensional stress–strain

relations are used:
rh ¼
E

ð1� m2Þ ½eh þ me/� þ
m

1� m
rz ð19Þ

r/ ¼ E
ð1� m2Þ ½e/ þ meh� þ

m
1� m

rz ð20Þ

sh/ ¼ Gch/ ð21Þ
together with the following strain–displacement relations:
eh ¼
1

ðRþ zÞ sin/
ou
oh

þ v
ðRþ zÞ ctg/ þ w

Rþ z
ð22Þ

e/ ¼ 1

ðRþ zÞ
ov
o/

þ w
Rþ z

ð23Þ

ch/ ¼ 1

ðRþ zÞ sin/
ov
oh

þ 1

ðRþ zÞ
ou
o/

� u
ðRþ zÞ ctg/ ð24Þ
Substituting for the displacements u, v and w from Eqs. (14), (17) and (18) respectively, into expressions

(22)–(24) and substituting the resulting strain expressions into Eqs. (19)–(21), we obtain the following

expressions for the stresses:
rh ¼
E

1� m2
þ 1

R sin/
ou0
oh

(
þ cos/
R sin/

v0 þ
m
R
ov0
o/

þ z
2Gh

3

�
� 4z2

h2



1

R sin/
oQh

oh

�
þ cos/
R sin/

Q/ þ m
R
oQ/

o/




þ D2
1

�
� 1

R
z
�

� z2

R

�
w0 þ

2m
Eh3

1

R
z3 1

�
� 3z

2R

�
M � 1

Ec1

1

R

�
� z2

2
þ 2z3

3R
þ r32
R3

z2

2

�
� 7z3

6R

�

pi

� 1

Ec2

1

R

�
� z2

2
þ 2z3

3R
þ r31
R3

z2

2

�
� 7z3

6R

�

po



þ p/i cos/
Gc1R sin/

�
� zþ z2

2R
þ r32
R3

z
�

� 2z2

R

�


þ p/o cos/
Gc2R sin/

�
� zþ z2

2R
þ r31
R3

z
�

� 2z2

R

�

þ 1þ m

R 1þ z
R


 � w0

�
þ 1

E
pi
c1

�	
� zþ r32

R3
z
�

� 3

2

z2

R

�


þ po
c2

�
� zþ r31

R3
z
�

� 3

2

z2

R

�

� m

6z2

h3
M
�
)

þ m
1þ m

pi
c1

r32
ðRþ zÞ3

 "
� 1

!
þ po

c2

r31
ðRþ zÞ3

 
� 1

!#

ð25Þ
where
D2
1 ¼

1

R sin2 /

o2

oh2
þ cos/
R sin/

o

o/
þ m
R

o2

o/2
ð26Þ
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r/ ¼ E
1� m2

1

R sin/
ou0
oh

(
þ m cos/
R sin/

v0 þ
1

R
ov0
o/

þ z
2Gh

3

�
� 4z2

h2



m

R sin/
oQh

oh

�
þ m cos/
R sin/

Q/

þ 1

R
oQ/

o/



þ D2

2

�
� 1

R
z
�

� z2

R

�
w0 þ

2m
Eh3

1

R
z3 1

�
� 3z

2R

�
M

� 1

Ec1

1

R

�
� z2

2
þ 2z3

3R
þ r32
R3

z2

2

�
� 7z3

6R

�

pi �

1

Ec2

1

R

�
� z2

2
þ 2z3

3R
þ r31
R3

z2

2

�
� 7z3

6R

�

po




þ mp/i cos/
Gc1R sin/

�
� zþ z2

2R
þ r32
R3

z
�

� 2z2

R

�

þ mp/o cos/
Gc2R sin/

�
� zþ z2

2R
þ r31
R3

z
�

� 2z2

R

�


þ 1þ m

R 1þ z
R


 � w0

�
þ 1

E
pi
c1

�	
� zþ r32

R3
z
�

� 3

2

z2

R

�

þ po

c2

�
� zþ r31

R3
z
�

� 3

2

z2

R

�

� m

6z2

h3
M
�
)

þ m
1þ m

pi
c1

r32
ðRþ zÞ3

 "
� 1

!
þ po

c2

r31
ðRþ zÞ3

 
� 1

!#
ð27Þ
where
D2
2 ¼

m

R sin2 /

o2

oh2
þ m cos/
R sin/

o

o/
þ 1

R
o2

o/2
ð28Þ
and
sh/ ¼ G
1

R sin/
ov0
oh

	
þ 1

R
ou0
o/

� u0 cos/
R sin/

v0 þ
z

2Gh
3

�
� 4z2

h2



1

R sin/
oQ/

oh

�
þ 1

R
oQh

o/
� cos/
R sin/

Qh




þ D2
3

�
� 1

R
z
�

� z2

R

�
w0 þ

2m
Eh3

1

R
z3 1

�
� 3z

2R

�
M � 1

Ec1

1

R

�
� z2

2
þ 2z3

3R
þ r32
R3

z2

2

�
� 7z3

6R

�

pi

� 1

Ec2

1

R

�
� z2

2
þ 2z3

3R
þ r31
R3

z2

2

�
� 7z3

6R

�

po



þ p/i cos/
Gc1R sin/

�
� zþ z2

2R
þ r32
R3

z
�

� 2z2

R

�


þ p/o cos/
Gc2R sin/

�
� zþ z2

2R
þ r31
R3

z
�

� 2z2

R

�
�
ð29Þ
where
D2
3 ¼

2

R sin/
o2

oho/
� 2 cos/

R sin2 /

o

oh
ð30Þ
2.3. Stress couples and stress resultants on the middle surface

Using the definitions of the stress couples:
Mh ¼ �
Z h=2

�h=2
rhz 1
�

þ z
R

�
dz ð31Þ

M/ ¼ �
Z h=2

�h=2
r/z 1
�

þ z
R

�
dz ð32Þ
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Mh/ ¼ �
Z h=2

�h=2
sh/z 1

�
þ z
R

�
dz ð33Þ
We now substitute the expressions for stresses from Eqs. (25), (27), (29) into the respective relations for the

stress couples to obtain
Mh ¼ D
	
� 1

R2 sin/
ou0
oh

� cos/
R2 sin/

v0 �
m
R2

ov0
o/

� 6

5Gh
1

R sin/
oQh

oh

�
þ cos/
R sin/

Q/ þ m
R
oQ/

o/




þ 1

R
D2

1w0 þ
9mh

112ER3

�
� 3m

10ERh

�
D2

1M þ 1

Ec1

1

R
h2

40R
1

��
� 4

r32
R3

�

D2

1pi

þ 1

Ec2

1

R
h2

40R
1

��
� 4

r31
R3

�

D2

1po þ
p/i cos/
R sin/

1

Gc1
1

�
� r32
R3

� 3h2

40R2




þ p/o cos/
R sin/

1

Gc2
1

�
� r31
R3

� 3h2

40R2



þ 1þ m

ER
pi
c1

1

��
þ m � r32

R3
1ð � 2mÞ




þ po
c2

1

�
þ m � r31

R3
1ð � 2mÞ



�
ð34Þ

M/ ¼ D
	
� m
R2 sin/

ou0
oh

� m cos/
R2 sin/

v0 �
1

R2

ov0
o/

� 6

5Gh
m

R sin/
oQh

oh

�
þ m cos/
R sin/

Q/ þ 1

R
oQ/

o/




þ 1

R
D2

2w0 þ
9mh

112ER3

�
� 3m

10ERh

�
D2

2M þ 1

Ec1

1

R
h2

40R
1

��
� 4

r32
R3

�

D2

2pi

þ 1

Ec2

1

R
h2

40R
1

��
� 4

r31
R3

�

D2

2po þ
mp/i cos/
R sin/

1

Gc1
1

�
� r32
R3

� 3h2

40R2




þ mp/o cos/
R sin/

1

Gc2
1

�
� r31
R3

� 3h2

40R2



þ 1þ m

ER
pi
c1

1

��
þ m � r32

R3
1ð � 2mÞ




þ po
c2

1

�
þ m � r31

R3
ð1� 2mÞ



�
ð35Þ
and
Mh/ ¼ D
1� m
2

	
� 1

R2 sin/
ov0
oh

� 1

R2

ou0
o/

� cos/
R2 sin/

u0 �
6

5Gh
1

R sin/
oQ/

oh

�
þ 1

R
oQh

o/
� cos/
R sin/

Qh




þ 1

R
D2

3w0 þ
9mh

112ER3

�
� 3m

10ERh

�
D2

3M þ 1

Ec1

1

R
h2

40R
1

��
� 4

r32
R3

�

D2

3pi

þ 1

Ec2

1

R
h2

40R
1

��
� 4

r31
R3

�

D2

3po þ
phi cos/
R sin/

1

Gc1
1

�
� r32
R3

� 3h2

40R2




þ pho cos/
R sin/

1

Gc2
1

�
� r31
R3

� 3h2

40R2


�
: ð36Þ
Substituting for the stresses rh, r/, and s/ from Eqs. (25), (27), (29) into the following definitions for the

stress resultants:
Nh ¼
Z h=2

rh 1
�

þ z
R

�
dz ð37Þ
�h=2
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N/ ¼
Z h=2

�h=2
r/ 1
�

þ z
R

�
dz ð38Þ

Nh/ ¼
Z h=2

�h=2
sh/ 1
�

þ z
R

�
dz ð39Þ
we obtain the following expressions for the stress resultants:
Nh ¼
Eh

1� m2
1

R sin/
ou0
oh

	
þ cos/
R sin/

v0 þ
m
R
ov0
o/

þ h
10GR

1

R sin/
oQh

oh

�
þ cos/
R sin/

Q/ þ m
R
oQ/

o/




� mh
80ER2

D2
1M þ 1

Ec1

h2

24R
1

��
� r32
R3

�

D2

1pi þ
1

Ec2

h2

24R
1

��
� r31
R3

�

D2

1po

� p/i cos/
sin/

1

Gc1

h2

24R2
1

��
þ 2

r32
R3

�

� p/o cos/

sin/
1

Gc2

h2

24R2
1

��
þ 2

r31
R3

�

þ 1þ m

R
w0

� 3m 1þ mð Þ
10EhR

M � mð1� mÞ
E

pi
c1

1

��
� r32
R3

�
þ po

c2
1

�
� r31
R3

�
�
ð40Þ

N/ ¼ Eh
1� m2

m
R sin/

ou0
oh

	
þ m cos/
R sin/

v0 þ
1

R
ov0
o/

þ h
10GR

m
R sin/

oQh

oh

�
þ m cos/
R sin/

Q/ þ 1

R
oQ/

o/




� mh
80ER2

D2
2M þ 1

Ec1

h2

24R
1

��
� r32
R3

�

D2

2pi þ
1

Ec2

h2

24R
1

��
� r31
R3

�

D2

2po

� p/im cos/
sin/

1

Gc1

h2

24R2
1

��
þ 2

r32
R3

�

� p/om cos/

sin/
1

Gc2

h2

24R2
1

��
þ 2

r31
R3

�

þ 1þ m

R
w0

� 3m 1þ mð Þ
10EhR

M � mð1� mÞ
E

pi
c1

1

��
� r32
R3

�
þ po

c2
1

�
� r31
R3

�
�
ð41Þ
and
Nh/ ¼ Eh
1� m2

1� m
2

� �
1

R sin/
ov0
oh

	
þ 1

R
ou0
o/

� cos/
R sin/

u0 þ
h

10GR
1

R sin/
oQ/

oh

�
þ 1

R
oQh

o/
� cos/
R sin/

Qh




� mh
80ER2

D2
3M þ 1

Ec1

h2

24R
1

��
� r32
R3

�

D2

3pi þ
1

Ec2

h2

24R
1

��
� r31
R3

�

D2

3po

� p/i cos/
sin/

1

Gc1

h2

24R2
1

��
þ 2

r32
R3

�

� p/o cos/

sin/
1

Gc2

h2

24R2
1

��
þ 2

r31
R3

�
�
: ð42Þ
2.4. Average displacements �u, �v, �w and rotations /h, //

For identifying the proper boundary conditions of the derived shell theory, average displacements �u, �v,
�w, and rotations /h, // are introduced. The rotations are for sections h ¼ const and / ¼ const, respectively.
We first define transverse shear resultants as
Qh ¼ T chz ð43Þ

Q/ ¼ T c/z ð44Þ
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where T is given by
T ¼ 5

6
Gh ð45Þ
and chz, c/z expressed similarly to Eqs. (15) and (16):
chz ¼
1

ðRþ zÞ sin/
o�w
oh

þ o�u
oz

� �u
ðRþ zÞ ð46Þ

c/z ¼
o�v
oz

þ 1

ðRþ zÞ
o�w
o/

� �v
ðRþ zÞ ð47Þ
The average transverse displacement �w is obtained by equating the work of the transverse shear stress s/z

due to the displacement w to the work of the transverse shear resultant Q/ due to the average displacement
�w (Voyiadjis and Baluch, 1981):
Z h=2

�h=2
s/zw 1

�
þ z
R

�
dz ¼ Q/�w ð48Þ
One could choose to equate the work of the transverse shear stress shz due to the displacement w to the work

of the transverse shear resultant Qh due to the average displacement �w instead, which yields the same
resulting expression for �w, given by
�w ¼ w0 �M
3m

10Eh

�
� 9mh
112ER2

�
� 1

10

h2

REc1

r32
R3

pi �
1

10

h2

REc2

r31
R3

po ð49Þ
Similarly to obtain �u, �v, /h, // we use the following equations:
Z h=2

�h=2
rhu 1
�

þ z
R

�
dz ¼ Nh�uþMh/h ð50Þ

Z h=2

�h=2
r/v 1
�

þ z
R

�
dz ¼ N/�vþM/// ð51Þ
The resulting expressions for �u, �v, /h, // are given by
�u ¼ u0 þ
1

ER sin/
h2

24

1

c1

opi
oh

1

��
� r32
R3

�
þ 1

c2

opo
oh

1

�
� r31
R3

�

ð52Þ

�v ¼ v0 þ
1

ER
h2

24

1

c1

opi
o/

1

��
� r32
R3

�
þ 1

c2

opo
o/

1

�
� r31
R3

�

ð53Þ

/h ¼
1

R sin/
o�w
oh

� 6

5Gh
Qh ð54Þ

// ¼ 1

R
o�w
o/

� 6

5Gh
Q/ ð55Þ
Making use of Eqs. (43) and (44) we can write the following:
/h ¼
1

R sin/
o�w
oh

� chz ð56Þ
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// ¼ 1

R
o�w
o/

� c/z: ð57Þ
The remaining stress resultants and stress couples can be expressed in a more concise manner in terms of
�u, �v, �w, chz, c/z as follows:
Mh ¼ D
1

R sin/
o

oh
1

R sin/
o�w
oh

 "
� chz

!
þ 1

R
ctg/

1

R
o�w
o/

 
� c/z

!
þ m
R

o

o/
1

R
o�w
o/

 
� c/z

!

� 1

R2 sin/
o�u
oh

� ctg/
R2

�v� m
R2

o�v
o/

#
þ k1pi þ k2po þ k3p/i þ k4p/o ð58Þ

M/ ¼ D
m

R sin/
o

oh
1

R sin/
o�w
oh

 "
� chz

!
þ m
R
ctg/

1

R
o�w
o/

 
� c/z

!
þ 1

R
o

o/
1

R
o�w
o/

 
� c/z

!

� m
R2 sin/

o�u
oh

� mctg/
R2

�v� 1

R2

o�v
o/

#
þ k1pi þ k2po þ mk3p/i þ mk4p/o ð59Þ

Mh/ ¼ D
1� m
2

1

R
o

o/
1

R sin/
o�w
oh

 "
� chz

!
þ 1

R
ctg/

1

R sin/
o�w
oh

 
� c/z

!
þ 1

R sin/
o

oh
1

R
o�w
o/

 
� c/z

!

þ ctg/
R

1

R sin/
o�w
oh

 !
� 1

R2 sin/
o�v
oh

� 1

R2

o�u
o/

þ ctg/
R2

�u

#
þ k5pi þ k6po þ k3

1� m
2

p/i þ k4
1� m
2

p/o

ð60Þ

Nh ¼
Eh

1� m2
1

R sin/
o�u
oh

"
þ 1

R
ctg/�vþ m

R
o�v
o/

þ 1þ m
R

�w

#
þ D

1

R2 sin/
ochz

oh

�
þ ctg/

R2
c/z þ

m
R2

oc/z

o/




þ k7pi þ k8po þ k9p/i þ k10p/o ð61Þ

N/ ¼ Eh
1� m2

m
R sin/

o�u
oh

"
þ m
R
ctg/�vþ 1

R
o�v
o/

þ 1þ m
R

�w

#
þ D

m
R2 sin/

ochz

oh

�
þ mctg/

R2
c/z þ

1

R2

oc/z

o/




þ k7pi þ k8po þ mk9p/i þ mk10p/o ð62Þ

Nh/ ¼ Eh
1� m2

1� m
2

� �
1

R sin/
o�v
oh

"
þ 1

R
o�u
o/

� 1

R
ctg/�u

#
þ D
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2

� �
1

R2 sin/
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oh

�
� ctg/

R2
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1
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ochz
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� 1� m
2

� �
k9phi þ

1� m
2

� �
k10pho ð63Þ
where
k1 ¼ D
1þ m
ERc1

1

�
þ m � r32

R3
ð1� 2mÞ



ð64Þ

k2 ¼ D
1þ m
ERc2

1

�
þ m � r31

R3
ð1� 2mÞ



ð65Þ
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k3 ¼ D
ctg/
RGc1

1

�
� r32
R3

�
ð66Þ

k4 ¼ D
ctg/
RGc2

1

�
� r31
R3

�
ð67Þ

k5 ¼ D
1� m
2

1

ERc1

h2

40R
1

��
� 4

r32
R3

�

ð68Þ

k5 ¼ D
1� m
2

1

ERc2

h2

40R
1

��
� 4

r31
R3

�

ð69Þ

k7 ¼
Eh

1� m2
h2

10REc1

r32
R3

1þ m
R

�
� mð1þ mÞ

Ec1
1

�
� r32
R3

�

ð70Þ

k8 ¼
Eh

1� m2
h2

10REc2

r31
R3

1þ m
R

�
� mð1þ mÞ

Ec2
1

�
� r31
R3

�

ð71Þ

k9 ¼ � Eh
1� m2

ctg/
Gc1

h2

24R2
1

���
þ 2

r32
R3

�


ð72Þ

k10 ¼ � Eh
1� m2

ctg/
Gc2

h2

24R2
1

���
þ 2

r31
R3

�


ð73Þ
These resulting constitutive equations reduce to those given by Flugge (1960) when the shear deformation

and radial effects are neglected. In this case, the average displacements are replaced by the middle surface

displacements. The transverse shear forces Qh, Q/ are obtained in this case from the equilibrium equations

in terms of the stress couples.

An alternate set of expressions for the stress couples may be obtained in terms of the average dis-

placements �u, �v, �w, and corresponding rotations /h, //. The following relations give these equations:
Mh ¼ D
1

R sin/
o/h

oh

"
þ 1

R
//ctg/ þ m

R

o//

o/
� 1

R2 sin/
o�u
oh

� ctg/
R2

�v� m
R2

o�v
o/

#
þ k1pi þ k2po

þ k3p/i þ k4p/o ð74Þ

M/ ¼ D
m

R sin/
o/h

oh

"
þ m
R

//ctg/ þ 1

R

o//

o/
� m
R2 sin/

o�u
oh

� mctg/
R2

�v� 1

R2

o�v
o/

#
þ k1pi þ k2po

þ mk3p/i þ mk4p/o ð75Þ

Mh/ ¼ D
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2

1

R
o/h

o/

"
þ 1

R
/hctg/ þ 1

R sin/

o//

oh
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1

R2 sin/
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p/o ð76Þ

2 2
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2.5. Equilibrium equations and boundary conditions

A free body diagram is used to derive the equilibrium equations. For the case of small deformation

analysis, the shell equilibrium equations are given by (Flugge, 1960):
o

o/
ðN/ sin/Þ þ oNh/

oh
� Nh cos/ � Q/ sin/ þ R sin/p/ ¼ 0 ð77Þ

o

o/
ðNh/ sin/Þ þ oNh

oh
þ Nh/ cos/ � Qh sin/ þ R sin/ph ¼ 0 ð78Þ

Nh sin/ þ N/ sin/ þ oQh

oh
þ o

o/
ðQ/ sin/Þ � R sin/pz ¼ 0 ð79Þ

o

o/
ðM/ sin/Þ þ oMh/

oh
�Mh cos/ � RQ/ sin/ ¼ 0 ð80Þ

o

o/
ðMh/ sin/Þ þ oMh

oh
þMh/ cos/ � RQh sin/ ¼ 0 ð81Þ

M/h

R
�Mh/

R
¼ N/h � Nh/ ð82Þ
In the above equilibrium expressions, p/, ph, pz are the equivalent distributed loads acting on the middle

surface of the shell. Eq. (82) is identically satisfied consequently reducing the number of equilibrium

equations to 5. The stress resultants and couples may be expressed in terms of either �u, �v, �w, ch, c/ or �u, �v, �w,
/h, //. We therefore have five unknowns to solve for from the five remaining equilibrium conditions

(77)–(81).

The static and kinematic boundary conditions may be expressed in terms of either �u, �v, �w, ch, c/ or �u, �v,
�w, /h, //, together with the use of the constitutive equations (58)–(73). The boundary conditions are given

as follows:

1. if edge ð0;/Þ is simply supported the BC’s may be written as
�wð0;/Þ ¼ 0; //ð0;/Þ ¼ 0; Mhð0;/Þ ¼ 0
2. if edge ð0;/Þ is clamped the BCs may be written as
�wð0;/Þ ¼ 0; //ð0;/Þ ¼ 0; /hð0;/Þ ¼ 0; �uð0;/Þ ¼ 0
3. if on the edge ð0;/Þ stretching of the mid-plane is prevented, BCs may be written as u0ð0;/Þ ¼ 0;

v0ð0;/Þ ¼ 0, and if additionally the pressures pz are uniformly distributed, i.e. opz
oh ¼ opz

o/ ¼ 0 then
�uð0;/Þ ¼ 0; �vð0;/Þ ¼ 0

4. if edge ð0;/Þ is free to stretch in h direction, then v0ð0;/Þ ¼ 0; Nhð0;/Þ ¼ 0

5. if edge ð0;/Þ is free the BCs may be written as
Mhð0;/Þ ¼ 0; Qhð0;/Þ ¼ 0; Mh/ð0;/Þ ¼ 0; Nhð0;/Þ ¼ 0; Nh/ð0;/Þ ¼ 0:
2.6. The nonlinear nature of the stress distribution

The resulting nonlinear distribution through the thickness for the in-plane stresses in the proposed thick
shell theory is due to the incorporation of the initial curvature of the shell, and the three-dimensional
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constitutive equations as obtained from relations (19)–(21). This effect becomes highly pronounced in thick

shells by changing the magnitude of the maximum stress significantly as compared to the linear stress

variation theory.

In the expressions for in-plane stress components rh, r/, sh/ given by Eqs. (25)–(29), nonlinear terms
such as 1=ðRþ zÞ and z2=R are incorporated. Consequently, the stresses given by the present theory have a

nonlinear distribution along the thickness of the shell. Let us consider the simple case of a constant normal

pressure and investigate the corresponding stress distribution of r/ through the thickness. In this case

we have
r/ ¼ E
1� m2

1

R sin/
ou0
oh

(
þ m cos/
R sin/

v0 þ
1

R
ov0
o/

þ z
2Gh

3

�
� 4z2
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� 3z

R
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�
� 2z
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� 2z2
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�


	 m
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oh

�
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R sin/
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R
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2

�
� 1
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z
�

� z2
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R
z3 1

�
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�
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þ mp/i cos/
Gc1R sin/

�
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2R
þ r32
R3

z
�

� 2z2

R

�

þ mp/o cos/
Gc2R sin/

�
� zþ z2

2R
þ r31
R3

z
�

� 2z2

R

�


þ 1þ m

R 1þ z
R


 � w0

�
þ 1

E
pi
c1

�	
� zþ r32

R3
z
�

� 3

2

z2

R

�

þ po

c2

�
� zþ r31

R3
z
�

� 3

2

z2

R

�

� m

6z2

h3
M
�
)

þ m
1þ m

pi
c1

r32
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 "
� 1

!
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c2

r31
ðRþ zÞ3

 
� 1

!#
ð83Þ
In Eq. (83) all the terms are nonlinear in z except for the terms associated with 1
R sin/

ou0
oh ,

ov0
o/,

o2w0

oh2
.

The stress distribution obtained using the presented theory will be compared with the elasticity theory.
3. Equivalent formulation for the thick plate theory

It is relatively simple to reduce the proposed shell theory to a thick plate theory. As R approaches infinity

the stress resultants and stress couples reduce to
Nx ¼
Eh

1� m2
o�u
ox

 
þ m

o�v
oy

!
þ k1ðpi þ poÞ ð84Þ

Ny ¼
Eh

1� m2
o�v
oy

 
þ m

o�u
ox

!
þ k1ðpi þ poÞ ð85Þ

Nx ¼ Ny ¼ Gh
o�u
oy

 
þ o�v
ox

!
ð86Þ

Qx ¼ T
o�w
ox

 
� /x

!
ð87Þ

Qy ¼ T
o�w
oy

 
� /y

!
ð88Þ



G.Z. Voyiadjis, P. Woelke / International Journal of Solids and Structures 41 (2004) 3747–3769 3761
Mx ¼ D
o/x

ox

�
þ m

o/y

oy

�
þ k2ðpi þ poÞ ð89Þ

My ¼ D
o/y

oy

�
þ m

o/x

ox

�
þ k2ðpi þ poÞ ð90Þ

Mxy ¼ Myx ¼ D
1� m
2

o/x

oy

�
þ
o/y

ox

�
ð91Þ
where
k1 ¼
mh

2ð1� mÞ ð92Þ

k2 ¼ �D
6mð1þ mÞ

5Eh
ð93Þ
We note that the present shell theory reduces to exactly the same equivalent thick plate theory as the one

given by Voyiadjis and Shi (1991).
4. Examples

4.1. Thick sphere subjected to uniform pressures

We investigate the stress distribution of r/ for a thick sphere subjected to uniform pressure pi ¼ 5 kPa,

and po ¼ 4 kPa (Fig. 2).
In this case we have
v ¼ Q/ ¼ oM/

o/
¼ 0 ð94Þ
and
w ¼ wðzÞ ð95Þ

The stress r/ using the proposed theory is expressed in this case as follows:
r/ ¼ E
Rþ z

w0

	
þ pi
c1

�
� zþ r32

R3
z
�

� 3

2

z2

R

�

þ po

c2

�
� zþ r31

R3
z
�

� 3

2

z2

R

�
�
ð96Þ
The corresponding exact elasticity solution for this problem is given by Lame (1833):
r/ ¼ � po
2c2

2

 
þ r31
ðRþ zÞ3

!
� pi
2c1

2

 
þ r32
ðRþ zÞ3

!
ð97Þ
From the theory of elasticity we have
w0 ¼
R
E

r/jz¼0 ð98Þ
where
r/jz¼0 ¼ � po
2c2

2

�
þ r31
R3

�
� pi
2c1

2

�
þ r32
R3

�
ð99Þ



Fig. 2. Spherical shell subject to internal and external pressures.
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Substituting for w0 from Eqs. (98) and (99) into expression (96), we obtain the following expression for r/:
r/ ¼ R
Rþ z

�
� po
2c2

2

�
þ r31
R3

�
� pi
2c1

2

�
þ r32
R3

�

þ 1

Rþ z
pi
Ec1

��
� zþ r32

R3
z
�

� 3

2

z2

R

��

þ po
c2

�
� zþ r31

R3
z
�

� 3

2

z2

R

��

ð100Þ
It can be easily shown that r/ obtained from Eq. (100) for the case of z ¼ 0 is identical to r/ obtained from

the elasticity solution expressed by Eq. (97), for the same case, i.e. z ¼ 0 (Table 1). It is also worthy
to mention that, as expected in the case of a sphere r/ ¼ rh.

Gupta and Khatua (1978) in their derivation of a thick shell superparametric finite element proposed

a modification in the expression for the circumferential stress r/. Their modified expression is given by
r/ ¼ R
Rþ z

r0 ð101Þ
where r0 is the average hoop stress. We note that Gupta and Khatua’s scheme cannot distinguish the

difference between the internal and external pressures.

As shown in Table 1, the present theory is very close to the exact elasticity solution. In order to show the

improvement in the present theory versus the classical shell theory, the problem of spherical container

subject to uniform internal pressure pi ¼ 5 kPa is analyzed. Fig. 3 shows comparison of the exact solution
with classical theory by Niordson (1985), and the present theory.



Table 1

r/ distribution for spherical shell

r1 r2 r2=r1 h ¼ r2 � r1 c1 c2 Elasticity r/ (kPa) Present theory r/ (kPa)

r ¼ r1 r ¼ r2 r ¼ r1 r ¼ r2

3 3.9 1.3 0.9 )1.2 )0.545 19.7782 15.2782 19.712 15.315

3 4.5 1.5 1.5 )2.4 )0.704 14.18421 9.68421 14.01 9.7539

3 5.1 1.7 2.1 )3.9 )0.796 11.95004 7.45004 11.633 7.5458

3 6 2 3 )7 )0.875 10.42857 5.92857 9.8571 6.0476

3 6.6 2.2 3.6 )9.6 )0.906 9.899254 5.39925 9.1463 5.5253
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As expected the results deviate form the exact, as the thickness of the shell increases. However, there is a
significant improvement in the results obtained using the present theory when compared to the classical

shell theory, which yields large errors for thick shells.

The error in the present work proves to be much smaller than in the case of classical thin shell theory.

The later is built on Kirchhoff–Love assumption, which as shown by Niordson (1971) has relative error of

½h=Rþ ðh=LÞ2�. We therefore expect the error of the classical theory to be very close to the expression given

by Niordson: ½h=Rþ ðh=LÞ2�. Comparison of errors is shown in Fig. 4.

The classical theory has an error that is approximately equal to the Niordson error. The present theory

also shows some loss of accuracy as the thickness of the shell increases. It is however much smaller than the
Niordson error, as shown in Fig. 4.
4.2. Hemispherical dome under uniform gravitational pressure

We consider a simply supported hemispherical dome of radius R ¼ 10 m and thickness t, subject to
gravitational pressure p ¼ 0:5 kPa (Fig. 5).
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The bending stresses reach maximum at the top of the dome, i.e. / ¼ 0�. If the shell is thin, they are

however considered negligible and the loading is entirely resisted by the membrane action of the shell. As
the thickness increases, bending stresses with nonlinear terms start to play an important role.

We will investigate rh stresses at / ¼ 0�, i.e. at the top of the dome. The results of the analysis given by

the classical theory and the present are shown in Table 2 and Fig. 6.

Analysis of the above results leads to the same conclusions as in the previous example. The present

theory shows very good agreement with the classical one for the case of thin shells, while there is an

improvement in the treatment of thick shells.
4.3. Morley’s spherical shell

The following example is used as a standard problem to test the accuracy of the shell theories and the

finite elements built based on these theories (MacNeal and Harder, 1985). The problem represents a
hemisphere with four point loads alternating in sign at 90� intervals on the equator, which is a free edge (see

Fig. 7).



Table 2

rh distribution for spherical dome

Thickness, t (m) Classical-Niordson rh (kPa) Present theory rh (kPa)

0.06 )25.8065 )25.13
0.1 )15.7143 )13.93
0.14 )11.3553 )9.409
0.18 )8.91473 )6.965
0.22 )7.3501 )5.661
0.26 )6.25943 )4.906
0.3 )5.45455 )4.375
0.4 )4.13462 )3.226
0.6 )2.79412 )1.925
1.0 )1.7 )0.85
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Fig. 6. Comparison of results.
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Both membrane and bending strains contribute significantly to the radial displacement at the point of
load application. The value of the displacement, 0.094 under the load, published by MacNeal and Harder

(1985), is used as a reference solution. Steele (1987) and Simo et al. (1989) stated however that the analytical

solution based on the asymptotic expansion yields an answer of 0.093. The present theory yields the value

of 0.0929, which once again proves the current work to be accurate.

We also investigate the transverse shear stresses for the problem above with different thicknesses for the

shell. We compare the values obtained here with those by Mindlin/Koiter–Sanders theory in Table 3.

The normal stresses rx are shown here to compare the magnitudes of normal and transverse shear

stresses. The last column in Table 3 gives the ratio of sxz=rx. It shows the increasing importance of the
transverse shear stresses with the increase of the thickness of the shell. For the first shell analyzed, with a

thickness of 0.04 in, sxz is only 0.0068 of the normal stresses rx, whereas the same ratio for the thickness of

0.9 in becomes 0.12. It shows the expected pattern of the transverse shear stresses becoming more significant

in the case of thick shells.



Fig. 7. Morley’s sphere.

Table 3

Transverse shear and normal stresses for hemispherical shell

Thickness, t (in.) sxz (psi) syz (psi) rx (psi) Ratio sxz=rx

Mindlin/KS Present Mindlin/KS Present Mindlin/KS Present

0.04 )38.71 )38.5 )22.38 )22.21 )5691 )5658 0.0068

0.1 )15.11 )14.98 )6.7 )6.62 )965.7 )954.6 0.0156

0.18 )8.131 )7.96 )3.596 )3.51 )305.4 )298.303 0.0266

0.28 )5.047 )4.97 )2.417 )2.37 )127.3 )125.6 0.0396

0.4 )3.41 )3.19 )1.804 )1.703 )62.34 )61.63 0.0547

0.54 )2.441 )2.3 )1.42 )1.33 )33.93 )33.26 0.0719

0.7 )1.824 )1.642 )1.152 )1.121 )19.92 )19.67 0.0915

0.9 )1.376 )1.27 )0.9376 )0.926 )11.82 )11.68 0.1164
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The present theory provides very good approximation of the transverse stresses which of particularly
great importance in the case of thick shells.

4.4. Circular arch

Another benchmark problem testing the accuracy of the shell theories is cantilevered circular arch

subject to in-plane shear (MacNeal and Harder, 1985). One end of the arch is fixed against displacements

and rotations, and the other end is free. Inner radius¼ 4.12, outer radius¼ 4.32, thickness¼ 0.1, Young’s
modulus¼ 10E6, Poisson’s ratio¼ 0.25. Two unit forces are applied at the free end of the arch (Fig. 8).

Vertical deflection of the free end is investigated here. The analytical solution of this problem stated by

MacNeal and Harder (1985) is 0.08734. The deflection resulting from the present theory yields the value of

0.08074, which for the problem above is a very good approximation of the exact solution.

4.5. Thick cylinder subjected to uniform pressures

The current theory can be reduced to the case of cylindrical shells, as given by Voyiadjis and Shi (1991).
Therefore, the Voyiadjis and Shi (1991) formulation can be regarded as a special case of the present theory.



Fig. 8. Circular arch.
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To show this we now investigate the stress distribution of r/ for a thick cylinder subjected to uniform

pressures pi and po. Similarly to the previous example, we have
v ¼ Q/ ¼ oM/

o/
¼ 0 ð102Þ
and
w ¼ wðzÞ ð103Þ
To reduce the current theory to the case of cylindrical shells we adopt
R sin/oh ¼ ox and
u
R
¼ v

R
¼ w

R
¼ 0 ð104Þ
Considering also solutions due to Lame for thick cylinders, we can obtain the stress distribution for r/ as

given by Voyiadjis and Shi for the case of cylindrical shells:
r/ ¼ E
Rþ z

w0

	
þ pi
Ec1

�
� zþ r22

R2
z
�

� z2

R

�

þ po

c2

�
� zþ r21

R2
z
�

� 3

2

z2

R

�
�
ð105Þ
The corresponding exact elasticity solution for this problem is given by
r/ ¼ � po
c2

1

 
þ r21
ðRþ zÞ2

!
� pi
c1

1

 
þ r22
ðRþ zÞ2

!
ð106Þ
Table 4 shows comparison of the results of the given problem obtained by various theories with both

analytical and numerical results obtained here. The numerical solution shown in Table 4, is obtained with

doubly curved finite elements built on the present spherical theory. It shows very good agreement with the

analytical solution of the cylindrical shell problem, provided by the same theory, as well as the exact-

elasticity solution obtained by Lame (1833). It shows applicability of the present theory to not only
spherical shells but also shells with different radius of curvature in two directions. The present theory can

therefore be applied to shells of general shapes.



Table 4

r/ distribution for cylindrical shell

r2=r1 Winkler’s theory Elasticity-exact Present theory

Analytical Numerical

r ¼ r1 r ¼ r2 r ¼ r1 r ¼ r2 r ¼ r1 r ¼ r2 r ¼ r1 r ¼ r2

1.5 )26.971 20.607 )27.858 21.275 )27.971 20.029 )27.692 19.826

2 )7.725 4.863 )7.755 4.917 )7.642 4.358 )7.464 4.284

3 )2.285 1.095 )2.292 1.130 )2.105 0.925 )2.029 0.876

3768 G.Z. Voyiadjis, P. Woelke / International Journal of Solids and Structures 41 (2004) 3747–3769
5. Conclusions

A theory for thick spherical shells is developed in this paper. By considering the shear strains, the

transverse shear deformations are accounted for in the resulting shell equations. In the proposed theory,

the initial curvature effect is incorporated in the stress distribution leading to an accurate nonlinear

distribution of the in-plane stresses. Through the incorporation of the radial stresses to the proposed

shell formulation, we obtain the stress resultants and stress couples associated not only with the middle

surface displacement of the shells, but also with the radial stresses explicitly. By using the constitutive
equations of the three-dimensional theory of elasticity and incorporating the initial curvature effect on

the stress resultants and couples, an accurate set of constitutive equations for the thick shell theory is

obtained.

The constitutive equations presented here reduce to those given by Flugge (1960) when the shear

deformations and the radial stress effects are neglected, while the average displacements are replaced by the

middle surface displacements of the shell. The resulting proposed equations in this paper are slightly dif-

ferent than those given by Sanders (1959), Koiter (1960) and Niordson (1978), primarily because they use

the so-called effective stress resultants and stress couple tensors. These effective stresses are used in the
variational derivation of the constitutive equations (see Niordson, 1985). However, even when both the

shear deformation and the radial stresses are neglected, the stress distributions given in the present paper

will still be nonlinear because the stresses are derived from the three-dimensional constitutive equations

given by expressions (19)–(21).

The nonlinear distribution of the in-plane stresses through the thickness for thick shells was ignored in

the past in the formulation of the theory. This is not the case in the present paper. The nonlinear distri-

bution constitutes a very important ingredient for an accurate and reliable thick shell theory.

Similar to the shell theory by Sanders–Koiter, presented shell equations are convenient for use in the
finite element analysis. The proposed theory is not only very useful in the analysis of thick shells, but also

has the potential for use in the analysis of composite shells (see Noor and Burton, 1989). This theory is also

important in applications of vibrations of shells where the shear deformation and stress distribution along

the thickness direction play an important role.

The examples given here show that the proposed theory is accurate and in good agreement with the

exact solution, and other existing theories. The classical theory of shells yields errors that could grow large

in the case of moderate to thick shells. In the present theory there is a significant reduction in error, which

is much smaller than in the case of the classical theory, based on the Kirchhoff–Love assumption. This is
clearly shown in the first example. The current work is applicable to plates (setting the radius of curvature

infinite), beams as special cases of plates, and through the use of the finite element method to shells of

arbitrary shape, with radius of curvature being different in two directions e.g. cylindrical shells as well as

arches. It is therefore general and universal and gives very good results for all of the above-discussed

cases.
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